Treatment techniques for water containing cyanuric acid (CYA)

Chemical Engineering Department

Workshop 2020
INNOVATIVE TECHNOLOGIES FOR SUSTAINABLE MANAGEMENT OF URBAN AND INDUSTRIAL
WASTE STREAMS

E INVESTIGACIÓN

INTRODUCTION

SWIMMING POOL DISINFECTION

- ... Microorganisms in swimming pool water can pose a serious health issues
- Threat and pool disinfection is therefore compulsory by law

Chlorine Disinfection

Chlorine as hypochlorous acid (HClO) in water

- Massively employed
- highly effective method of disinfection

- losing its bactericide effect
- continuous supply is needed to maintain safe levels
- The half-life of chlorine when exposed (Uv-light): 45'

$$NaClO + H_2O \leftrightarrow HClO + Na^+ + OH^-$$

 $HClO + H_2O \leftrightarrow ClO^- + H_3O^+$

Cl⁻ Ineffective disinfection

$$2 HClO \rightarrow HCl + O_2$$
$$2 ClO^- \rightarrow 2 Cl^- + O_2$$

INTRODUCTION

WHAT IS CYANURIC ACID USED FOR?

CYANURIC ACID (CYA); cyclic trimer. The ring can readily interconvert between two structures.

- triol tautomer (may have aromatic character) predominates in solution.
- Deprotonation with base affords cyanurate salt

Cyanuric acid (CYA) as chlorine stabilizer (dichloroisocyanuric)

- Stabilises HClO and is added to pool water
- Slow down the degradation of HOCl by sunlight

INTRODUCTION

TOO MUCH CYA? Over-stabilization issues

CYA is extraordinarily stable in water

- **CYA concentration** therefore **rises** steadily over time.
- At high CYA levels, **chlorine** is **overstablished**, rendering it ineffective as a disinfectant.
- This increases the risk of **recreational water illnesses**
- **CYA** is therefore **regulated** by law
- CYN levels beyond **100 mg·L**⁻¹ can cause **health issues to kids** due to drinking water (WHO)

Real Decreto 742/2013, de 27 de septiembre, por el que se establecen los criterios técnico-sanitarios de las piscinas.

[CYA] \leq 75 mg·L⁻¹

Chlorine's "Staying Power" with Cyanuric Acid

art based on research published by: liams, K. (1997). Cyanurics - Benefactor or Bomb? Newcastle, California.

SOLUTION?

Currently only viable solution replace some of the pool water with fresh water,

- environmental concerns
- Economic concerns

AIMS OF THIS WORK

OBJECTIVES

MOTIVATIONS:

- Absence of treatments devoted to treat cyanuric acid in recreational water environments and bathing water

 Unavailability of conventional AOPs to degrade s-triazine herbicides: absence of total mineralization observed in s-triazine herbicides final product obtained was essentially 1,3,5-triazine2,4,6, trihydroxy

(cyanuric acid)

OBJECTIVES:

- To assess the possibility to treat cyanuric acid by AOPs intensification.
- Analyse the efficacy of the selected process to treat
 CYN in a real swimming pool water.

RESULTS

CYA DEGRADATION BY AOPS INTENSIFICATION

AUP PROCESS	OPERATIONAL CONDITIONS	CYA REIVIOVAL (%)*	TOC REIVIOVAL (%)
Heterogeneous Photocatalysis (P25)	[TiO2]=0.5 g·L ⁻¹ ; pH ₀ = 6.7, T=25 $^{\circ}$, Hg lamp, V=750 mL	-	-
Photo-Fenton	$[H2O2]_0$ =Stoich. dose, $[Fe^{2+}]_0$ = 10 mg·L ⁻¹ pH ₀ = 3, T=25-90 °C, V=750 mL, Hg lamp	-	X
Photo-Persulfate	[PS] ₀ =Stoich. dose, pH ₀ = 6.7, T=25-90 °C, V=750 mL	-	
Anodic Oixidation ,DSA Anode Ti 70 % TiO ₂ /30 % RuO ₂ coated	Current density: 40 mA·cm ⁻² , V=250 mL, L ⁻¹ , [NaCl]= 4 — g/L, pH ₀ = 6.7 -	98.4	36.2
Anodic Oxidation, BDD coated Ti Anode		100	87.5

CYA DEGRADATION BY AO (BBD)

Treatment of 50 mg·L⁻¹ CYA by AO, Boron Doped Diamond (BDD) electrode_[NaCl] = 4 g·L⁻¹

Operational Conditions: [CYN]= 50 mg·L⁻¹ Current density: $40 \text{ mA}\cdot\text{cm}^{-2}$, V=250 mL, L⁻¹, [NaCl]= $4 \text{ g}\cdot\text{L}^{-1}$, pH₀ = 6.7

TOC and Total N evolution (ppm)

CYA DEGRADATION MECHANISM

EFFECT OF CURRENT DENSITY

Treatment of [CYA] = 50 mg·L⁻¹ by AO, Boron Doped Diamond (BDD) electrode_[NaCl] = 500 mg·L⁻¹

TOC, TN and NO₃ evolution (ppm)

- As expected, the low the current density, the low the TOC and TN removal
- Nonetheless, still relatively high CYA removals can be achieved

CYA REMOVAL: Real Swimming Pool Water

Operational Conditions: Current density: 40 mA·cm⁻², V=250 mL, L⁻¹ pH $_0$ = 7.8

Swimming Pool Water conditions:

 $t = 0 \text{ min: } - pH_0 = 7.8, \text{ free chlorine } = 0-0.5 \text{ ppm}; \text{ Total alkalinity } = 80 \text{ ppm; CYA} = 150-300$

 $t = 240 \text{ min:- } pH_0 = 8.2, \text{ free chlorine} = 0-0.5 \text{ ppm}; \text{ Total}$ alkalinity = 80 ppm; CYA = 30-100

BDD AO was able to achieve a 37.2 % CYA removal even when $[CYA]_0 = 250 \text{ ppm}$

1:2

CONCLUDING...

NEXT STEPS...

- Elucidate the CYA degradation by AO (HPLC-MS???)
- Test CYA degradation in real swimming pool water with DSA (Dimensionally Stable Anodes)
- Operate in continues mode (Anode stability)
- Cost assessment in CYA degradation by electrochemical Advances Oxidation Process

CONCLUDING ...

- CYN in swimming pool water can be remove by AO processes.

Treatment techniques for water containing cyanuric acid (CYA)

Chemical Engineering Department

Acknowledgements

This work was supported by the following project: P2018/EMT-4341 (Consejería de Educación y Ciencia de la Comunidad Autónoma de Madrid).

J. Carbajo wants to thank the Ministerio de Ciencia, Innovación y Universidades (MICIU) for a grant under the Juan de la Cierva_Incorporación programme (IJCI-2017-32682).

Workshop 2020
INNOVATIVE TECHNOLOGIES FOR SUSTAINABLE MANAGEMENT OF URBAN AND INDUSTRIAL

WASTE STREAMS

