

INNOVATIVE TECHNOLOGIES FOR SUSTAINABLE MANAGEMENT OF URBAN AND INDUSTRIAL WASTE STREAMS

Wet oxidation for the removal of high organic load waste.

Carlos Ruiz de León Gómez

B. Hermana, J. Cañas, V.I. Águeda, J. García.

Universidad Complutense de Madrid Ecolotum, Energía Recuperable S.L.

Introduction

• What is a High Organic Load Waste (HOLW)?

What is its composition? What are its problems?

What is the current treatment?

What do we propose?

Secondary

Primary

Toxic compounds(PFCs, PCAs, etc.)

Heavy metals(Zn, Cu, Cd, Pb, Hg, etc.)

Microplastics

Pathogens (Escherichia coli, Giardia lambia, Candida, etc.)

Emerging pollutants

Sewage sludge generated in Spain: 24 millions m³/year

Sewage sludge generated in Spain: 24 millions m³/year

EE.UU. = 140 millions m³/year

China = 1.570 millions m³/year

Landfilling

Incineration

Agricultural application

Composting

OSCAR®

Subcritical wastewater oxidation (Oxidación Sub-Crítica de Aguas Residuales)

ALFA

BETA

Research prototypes

ALFA

- Subcritical water conditions
- Flow rate = 1 L/h
- Diluted Sludge
- Manual operation
- High versatility
- Kinetic study
- Investigation plant

ALFA Pilot plant

Solids Reduction:

99%.

Reduction COD and TC:

>80%.

✓ Pathogen removal:

100%.

- Obtaining easily biodegradable products.
- Kinetic data and simulation process

Research prototypes

BETA

- Subcritical water conditions
- Flow rate = 50 L/h
- Real Sludge
- Automated operation
- On-site treatment
- Economic study
- Demonstration plant

BETA Pilot plant

Solids Reduction:

91%.

Reduction COD and TC:

>80%.

Pathogen removal:

100%.

- ✓ Obtaining up to 5g/L acetic acid among others fatty acids
- ✓ Nutrient recovery through struvite precipitation

Economic viability

Conclusions

- OSCAR® is one of the most promising technologies for the treatment of HOLW.
- High organic matter removal. High solid content reduction.
- Cheaper than conventional technologies used in EU-15.
- ❖ Integrated into the circular economy. Do not separate, but eliminate the waste.
- Pathogen and toxic compounds removal due to extreme operating conditions.
- Self-sustainable, energy generation potential.
- Possibility of nutrient valorization. Fertilizer raw material.
- Optimum effluent for promoting aerobic and anaerobic treatments.

Thank you!

